
Journal of Great Lakes Research 37 (2011) 577–583

Contents lists available at ScienceDirect

Journal of Great Lakes Research

j ourna l homepage: www.e lsev ie r.com/ locate / jg l r
An appraisal of the Great Lakes advanced hydrologic prediction system

Andrew D. Gronewold ⁎, Anne H. Clites, Timothy S. Hunter, Craig A. Stow
NOAA, Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan, 48108, USA
⁎ Corresponding author. Tel.: +1 734 741 2444; fax:
E-mail addresses: Drew.Gronewold@noaa.gov (A.D.

Anne.Clites@noaa.gov (A.H. Clites), Tim.Hunter@noaa.go
Craig.Stow@noaa.gov (C.A. Stow).

0380-1330/$ – see front matter. Published by Elsevier
doi:10.1016/j.jglr.2011.06.010
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 3 March 2011
Accepted 26 May 2011
Available online 20 July 2011

Communicated by Leon Boegman

Keywords:
Water levels
Great Lakes
Forecasting
Uncertainty
Probabilistic model
Model verification
Great Lakes water level forecasts are used to inform decisions ranging from personal choices of recreational
activities to corporate evaluations of alternative cargo transport options. For effective decision-making it is
important that these model-based forecasts include an accurate expression of the forecast uncertainty, as well
as information regarding the model forecasting skill. We provide an assessment of water level forecasts from
1997 through 2009 that were made using the National Oceanic and Atmospheric Administration (NOAA)
Great Lakes Environmental Research Laboratory (GLERL) Advanced Hydrologic Prediction System (AHPS). A
visual comparison between observed and forecast water levels suggests that AHPS generally captures
seasonal and inter-annual patterns. A more quantitative assessment based on the percentage of observations
within 90% prediction intervals, however, indicates that AHPS generally underestimates the observed
variability of Great Lakes water levels. This assessment provides a benchmark for forecast performance
against which alternative model structures (including future evolutions of AHPS) can be tested, and a basis to
identify and prioritize the implementation of those alternatives. Including a calibrated model error term into
the AHPS framework, to accommodate the underestimated variability, is a priority for short-term
development and research, and represents one step toward more accurately quantifying forecast uncertainty.
Our results also underscore the importance of storing historical forecasts and the data from which they were
derived to serve as a basis for assessing model performance and prioritizing future model improvements.
Published by Elsevier B.V. on behalf of International Association for Great Lakes Research.
Introduction

The health, livelihood, and economic security of the Great Lakes
region are highly dependent on the capacity of the Lakes to support
commerce, navigation, and tourism, and to serve as a water supply
source. Thus, accurately forecasting water levels of the Great Lakes is
an important priority for research organizations and regulatory
agencies (Grima and Wilson-Hodges, 1977; IJC, 1989). As an
indication of this priority, the International Joint Commission (IJC),
in 1993, recommended region-wide initiatives focused on improving
methodologies for lake level monitoring, modeling, and forecasting to
better plan for, and in some cases mitigate, extreme flooding, erosion,
shoreline damage, and detrimental impacts to shipping and hydro-
power infrastructure (IJC, 1993). There is a large body of research,
however, both before and after the 1993 IJC report, that underscores
the importance of improving Great Lakes water level forecasting. This
research includes the development and application of process models
(Marchand et al., 1988), statistical models (including spectral
analysis, autoregressive moving average-based models, and dynamic
linear models, as described in Cohn and Robinson, 1976; Irvine and
Eberhardt, 1992; Lamon and Stow, 2010, respectively), as well as
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comparisons among different models (Meredith, 1970) and analyses
of models that propagate different climate change scenarios into
future Great Lakes water level variability (Angel and Kunkel, 2010).

From a regional water resources management perspective, there
are several pressing questions that need to be answered in the near
future about the dynamics of Great Lakes water levels, including: “For
how long, and to what extent, will the levels continue to decline
relative to the record high levels observed in the mid-1980s?”
(Sellinger et al., 2007), and “To what extent does forecast variability
affect the perceived risk of undesirable outcomes in water level-based
management decisions?” (for a historical perspective on this question,
see Lee et al., 1997). In addition, in light of current economic pressures
and limited resources, federal and other research agencies are asking,
“What is the magnitude of uncertainty in Great Lakes water level
forecasts, and what improvements to model algorithms and in-
vestments in monitoring infrastructure would best address and
reduce that uncertainty?” (Eberhardt and Moin, 2009).

Answers to these questions are based, at least in part, on model
forecasts. However, those forecasts should not only include an explicit
expression of uncertainty and variability, but their performance (or
“skill”, as described in Stow et al., 2009) should also be assessed in a
probabilistic framework that documents how accurately the model
predicts water levels with respect to model uncertainty. Assessing the
accuracy of the model forecast uncertainty is particularly important
because these forecasts are used for decision support and an accurate
assessment of uncertainty provides decision makers with the
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information needed to appropriately hedge their decisions (Reckhow,
1994). If the uncertainty bounds are too wide, the forecasts might
appear accurate because all observations are encompassed within the
forecast uncertainty, but unnecessarily-wide intervals (or overly-
conservative intervals) would be minimally informative to decision
makers. Alternatively, narrow forecast intervals that rarely capture the
observations would offer decision-makers a “false sense of security”,
leading them to bad decisions. We find that previous studies assessing
the performance of AHPS (Croley and Lee, 1993, for example) focus
primarily on deterministic metrics of model skill.

To address this research gap, we provide an assessment of the
National Oceanic and Atmospheric Administration (NOAA) Great Lakes
Environmental Research Laboratory (GLERL) Advanced Hydrologic
Prediction System (AHPS). AHPS is a comprehensive modeling
framework designed to provide seasonal probabilistic forecasts across
the LaurentianGreat Lakes for numerous hydrometeorological variables
including net basin supplies and water levels. We focus here on an
assessment of water level forecasts because, in contrast to net basin
supplies, water levels can be measured directly thereby providing a
benchmark to compare against model forecasts.

It is important to note that NOAA, through its National Weather
Service (NWS), maintains and operates a similarly-named Advanced
Hydrologic Prediction Service (also referred to as AHPS), that provides
stream flow forecasts at thousands of locations throughout the United
States to support flood forecasting and the development of floodmaps
(for details, see McEnery et al., 2005). For the remainder of this paper,
we will use the acronym AHPS to refer to the version of AHPS
developed by GLERL, however developing and implementing a single
integrated operating platform encompassing both systems is a
reasonable and practical goal for future research, particularly in
light of ongoing implementation of NOAA's Community Hydrologic
Prediction System (commonly referred to as CHPS, for details see
Schaake et al., 2006). Currently, (GLERL's) AHPS is used routinely by
governmental agencies, hydropower companies, and other groups in
both the United States and Canada to support official Great Lakes
water level forecasts, forecast-based management decisions, and as a
tool for understanding potential impacts of climate change (Croley,
1990; Croley et al., 1998).

An extensive body of literature documents the development of the
individual components of AHPS and their integration into a single
modular modeling framework along with analyses of those compo-
nents and of the relative skill of AHPS in forecasting net basin supplies
(Croley, 2006; Croley and Lee, 1993). Here, we provide (in the
following section) a brief description of AHPS to support further
discussion and analysis of AHPS forecasts, how they are generated,
and what changes to AHPS might lead to improved forecasting skill.
Our goal is to provide an assessment that serves as both a benchmark
for water level model forecasting performance against which
alternative model structures (including future evolutions of AHPS)
can be tested, and as a basis for identifying and prioritizing the
implementation of those alternatives. Future modifications may
include, but are not limited to, alternative climate and meteorological
data sources (Miller, 2009), models for compiling those data,
interconnecting channel flow routing algorithms, and innovative
approaches to predicting flows in ungauged basins (Kokkonen et al.,
2003; Krueger et al., 2010).

Overview of the Great Lakes advanced hydrologic prediction system
(AHPS)

AHPS is a Windows-based graphical user interface (GUI) applica-
tion that is used daily both at GLERL and other public and private
agencies in the Great Lakes region for forecasting Great Lakes water
levels and a range of other hydrometeorological variables. It begins
(Fig. 1) with a data mining procedure that extracts daily meteoro-
logical information from NOAA's National Climatic Data Center
(NCDC). Subbasin and over-lake averages are calculated for each
climatological variable using an automated Thiessen polygon-based
weighting algorithm (Croley and Hartmann, 1985) and subsequently
input to both a Lake Thermodynamic Model (Croley, 1992) and a
conceptual rainfall–runoff model which, within AHPS, is referred to as
the Large Basin Runoff Model (or LBRM, as described in Croley, 2002).

The Lake Thermodynamic Model (LTM) uses adjusted over-land
(i.e. subbasin) data from available weather stations to estimate
over-water meteorology based on air temperature, humidity, wind
speed, and cloud cover (Croley, 1989). LTM-derived evaporation
estimates are then combined with precipitation estimates from the
Thiessen polygon algorithm and runoff estimates from the LBRM to
estimate the net water supply into each lake (i.e. “net basin supply”
or NBS). NBS estimates serve as input to the Large Lakes Routing and
Regulation model which encodes the current Lake Superior
regulation plan and simulates water levels for Lakes Superior,
Michigan, Huron, Georgian Bay, Lake St. Clair, and Lake Erie. Water
level forecasts based on historical climatology from a given period of
record (for details, see Croley, 1997) are then combined in a
weighted ensemble framework.

Outflows and water levels for Lake Ontario are not calculated in
AHPS, in part because standard protocol in the Lake Ontario regulation
plan is frequently adjusted to accommodate small changes in the St.
Lawrence River flows. NBS values for Lake Ontario are produced and
are publicly available (along with NBS and lake level calculations for
the other Great Lakes) through GLERL.

Methods

To assess the forecasting skill of the current version of AHPS, we
compared 13 years (from 1997 through 2009) of 3 and 6-month
average monthly water level forecasts (i.e. forecasts for each month
made 3 and 6 months prior) to the corresponding lake-wide monthly
average of observed water levels for Lakes Superior, Michigan–Huron,
St. Clair, and Erie. For example, monthly average observed water
levels for July 2008 are compared to the 3-month (ahead) forecast
made on the first day of May 2008, and to the 6-month (ahead)
forecast made on the first day of February 2008. Lake-wide average
monthly “observed” levels are based on gauging station data from
both NOAA's National Ocean Service (NOS) Center for Operational
Oceanographic Products and Services (CO-OPS), and the Canadian
Hydrographic Service (CHS). Following protocol established by the
U.S. Army Corps of Engineers (USACE) and Environment Canada (EC),
and implemented through the Coordinating Committee on Great
Lakes Basic Hydraulic and Hydrologic Data, we use the average of a
subset of NOS CO-OPS and CHS measurements (Table 1) which are
believed to provide the most reliable and accurate representation of
the average monthly water levels in each lake (for details, see U.S.
Army Corps of Engineers, 2008).

We note that these average water levels are also uncertain, and
standard error-based uncertainty bounds (on average water level
observations) could be included in our assessment, resulting in a
comparison analogous to an ANOVA (a statistical technique for
comparing means for multiple independent variables). However, at
the monthly scale, with multiple stations and frequent observations
on each lake, this uncertainty is small relative to the forecast
uncertainty, so we did not incorporate average water level uncer-
tainty into our analysis. More importantly, including observation
uncertainty would not affect the pattern of any discrepancies that are
revealed in our investigation, and identifying systematic deviations is
one of our main goals.

AHPS generates probabilistic forecasts (Croley, 2003) of monthly
average water levels in each of the Great Lakes for the next one to ten
months based on current basin moisture conditions, NWS one and
three-month climatic outlooks for precipitation and temperature, and
historical weather and water level data. Water level (and other
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Fig. 1. Schematic representation of the Great Lakes Advanced Hydrologic Prediction System for forecasting water levels based on a single set of historical climatology (i.e. for a given
period of record). Methodologies (and detailed process schematics) for combining individual water level forecasts as members of a complete water level ensemble forecast are
described in Croley, 2003. In the schematic presented here, nodes represent data sources, data processing tools, and process-basedmodels, and interconnecting arrows represent the
flow of information between those nodes.
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hydrometeorological data) forecasts are available to the general
public through GLERL's web site however, until recently, forecasts
were not archived.

To retrospectively forecast (or “hindcast”) water levels, we used
data from 1997 to 2009 and followed standard AHPS forecasting
protocol with twomodifications. First, outlook weights (Croley, 2003)
used to generate the ensemble forecasts were recalculated using
historical climatic outlooks available from the NWS National Center
for Environmental Prediction (NCEP). Second, when “rebuilding”
historical meteorological data, we used the most up-to-date station
data because it would be excessively time consuming, if not
impossible, to retrospectively determine exactly which data sources
were available at the time of each monthly forecast. More specifically,
over the period 1997 through 2009, additional data streams and
quality assurance/quality control (QA/QC) procedures have been
implemented, or become available, since the original forecasts were
generated. These additional data sources and quality assurance
measures are included in our “hindcast”.

The importance of storing historical forecasts and the data used to
generate them cannot be overemphasized, now that digital storage is
not the challenge it was 20 years ago. As modeling methods improve
and data uncertainty changes, ready access to past forecasts will allow
continual monitoring of model performance, leading to continual
improvement in the tools available.

For each probabilistic forecast we (following Croley, 2003)
estimated 5%, 10%, 20%, 30%, 50%, 70%, 80%, 90%, and 95% quantiles of
the water level probability distribution, and subsequently calculated
the number and fraction of monthly average observed water level
values between the 5 and 95% quantiles (also referred to as the inner
90% prediction interval), as well as the prediction bias (measured as
the average difference between the median forecast water level and
the monthly average observed water level).



Table 1
Gauging stations used to calculate Great Lakes monthly average water levels. The
Fairport gauge was used (for this study) for the period between 1997 and 2007, and the
Cleveland gauge was used from 2008 through 2010.

Lake State or province Station or locality name

Superior Minnesota Duluth
Michigan Marquette C.G.
Michigan Pt Iroquois
Ontario Michipicoten
Ontario Thunder Bay

Michigan–Huron Michigan Harbor Beach
Michigan Mackinaw City
Michigan Ludington
Wisconsin Milwaukee
Ontario Thessalon
Ontario Tobermory

St.Clair Michigan St. Clair Shores
Ontario Belle River

Erie Ohio Toledo
Ohio Fairport (1997–2007)
Ohio Cleveland (2008–2010)
Ontario Port Stanley
Ontario Port Colborne
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Results

A visual assessment of the comparison between observed monthly
average water levels and corresponding AHPS forecasts (Fig. 2)
suggests that AHPS generally captures seasonal and interannual
trends. Furthermore, the results in Fig. 2 emphasize the significant
role that climate forecast uncertainty plays in determining future lake
levels because, at present, it is the only source of uncertainty currently
explicitly acknowledged in AHPS Great Lakes water level forecasts.

The results (Fig. 2) also suggest potential variations in forecasting
skill at different times of the year, at different periods over the past
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Fig. 2. Comparison between observed Great Lakes monthly average water levels between 199
limits in each panel cover the same range (2.0 m) to facilitate cross-lake comparisons.
13 years, and between the 3- and 6-month forecasts. These differences
are directly related to changes in the forecast bias and the relative
spread of the water level predictive distribution, and warrant a more
robust probabilistic assessment of forecast uncertaintywhich, given our
goal of establishing a performance benchmark for Great Lakes water
level forecasting skill, is beyond the scope of this paper (but is certainly
a goal for future research). For example, the 3-month forecast for Lake
Erie between 1998 and 2000 (Fig. 3) is less biased than the
corresponding 6-month forecast for the same time period, however
the bias for both 3- and 6-month Lake Erie water level forecasts and the
efficiency of the 90% prediction intervals are comparable across the
entire time period assessed in this study.

Qualitative, visual model performance evaluations, however, are
highly subjective (Allen et al., 2007); a more quantitative assessment of
AHPS skill, based on the fraction of observations within 90% prediction
intervals (Table 2), indicates that AHPS generally underestimates the
observed variability in Great Lakes water levels from 1997 through
2009. For example, the 3-month and 6-month 90% prediction intervals
in Lake Superior included 64% and 69% (respectively) of the observed
monthly average water levels. In general, the 90% prediction intervals,
across all lakes and across both 3- and 6-month forecasts, capture
between 64 and 74% of observed water levels. Our assessment of
forecasting bias (Table 2) indicates that AHPS, over the 1997 to 2009
time period, tends on average to slightly underestimate water levels in
Lakes St. Clair and Erie, and to overestimate water levels in Lakes
Michigan–Huron.
Discussion

Rigorous, comprehensive model skill assessment is relatively rare
in the refereed literature (Arhonditsis and Brett, 2004; Stow et al.,
2009), while excuses to forego uncertainty analysis are common
uperior

Obs. monthly avg. water level

t. Clair 17
5.

5
17

6.
5

17
7.

5

2004 2005 2006 2007 2008 2009

17
3.

0
17

4.
0

17
5.

0

 Erie

7 and early 2010, and corresponding AHPS 3- and 6-month forecasts. Note that the y-axis



W
at

er
 le

ve
l (

m
et

er
s,

 IG
LD

85
)

Lake Erie

Observed monthly average water level

1998 1999 2000

17
3.

5
17

4.
0

17
4.

5
17

5.
0

5
5

0
0.

25
0.

5

B
ia

s 
(m

et
er

s)

Zero bias (reference line)

Fig. 3. Comparison between observed and forecast Lake Erie monthly water levels between 1998 and 2000, including the bias of each monthly forecast and the average monthly bias
for the data record used in this study (1997–2010).
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(Pappenberger and Beven, 2006). Without a careful evaluation of
model skill, decision makers may assume either too much or too little
credence in the model forecasts resulting in poor decisions and
inappropriate actions (Gronewold et al., 2009). Additionally, a
meticulous skill assessment is essential to reveal model weaknesses
and identify areas where further effort should be directed to improve
model performance and also result in a better understanding of the
system being modeled. With these facts in mind, we have presented
an initial analysis of the predictive performance of NOAA's Great Lakes
AHPS, a comprehensive modular hydrological modeling system
designed to forecast net basin supplies and water levels for the
Laurentian Great Lakes within a probabilistic framework.

We have found that AHPS captures the main water level dynamics
in four lake systems (i.e. Superior, Michigan–Huron, St. Clair and Erie)
both 3 and 6 months into the future. However, of perhaps equal or
greater importance is that our assessment accommodates AHPS'
probabilistic forecasts by evaluating skill in light of its expression of
uncertainty, and suggests that there are sources of bias and
uncertainty that should be addressed in future evolutions of the
AHPS modeling framework (for a related discussion of quantifying
uncertainty in hydrological modeling, see Young, 2003).

In addition, we underscore the fact that many previous AHPS
forecasting skill assessments are based on AHPS NBS calculations, and
on comparisons between AHPS NBS calculations and NBS calculations
derived by the USACE and EC (Croley, 2006).While these comparisons
provide insight into the relative performance of each modeling
approach, we argue that NBS forecasts do not necessarily provide a
clear basis for assessingmodel forecasting skill because NBS values are
not directly observable and because they can be derived through
different methods (i.e. residual or component methods, as described
in Croley and Hunter, 1994) each with different intrinsic sources of
uncertainty, bias, and variability.

One general conclusion from previous NBS-based studies, however,
is that AHPS is negatively biased during periods with relatively high
water levels (Croley, 2002). The results we present in this paper,
however, which are based on an assessment during relatively low
water levels, suggest that the average bias is relatively small. Previous
studies also highlight the importance of incorporating antecedent
conditions in overall improvements to AHPS forecasting skill, particu-
larly when compared with climatic outlooks (Croley, 2006). In light of
our analysis here, and these previous studies, we identify in the
following paragraphs several critical components of AHPS which we
believe readily can and should be improved through ongoing and future
research.

To begin, we recognize that the current version of AHPS does not
include a residual error term to quantify differences between
historical Great Lakes water level forecasts and observations (Chapra,
2003; DiToro, 1984; Gronewold et al., 2009). This error term,
conditioned on data (and forecasts) over a particular calibration
period, would then be used to express uncertainty in future forecasts
above and beyond the uncertainty explicitly represented in model
inputs and model parameters (for further discussion of quantifying
residual error terms in the context of model forecasting, see Gelman
and Hill, 2007; Gronewold et al., 2011). At present, AHPS expresses
forecast uncertainty (as described in the Methods section) solely by
using a weighted ensemble of water level forecasts using different
periods of record from historical climatology as model input.
Consequently, including a calibrated model residual error term into
the AHPS forecasting framework is a priority for short-term AHPS
development and research, and represents a first step toward more
explicitly quantifying uncertainty throughout the individual compo-
nents of AHPS.

We also recognize that the water level “observations” used for
assessing AHPS forecasting skill in this paper are, in fact, derived from
a model (although in this case the model is statistical, rather than
process-based) that is also intrinsically uncertain. Uncertainty and
variability in monthly “observed” water level estimates depend in
part, for example, on the number of gauges (and their spatial
relationship) used in each estimate (Table 1). Furthermore, there
are alternative model algorithms (i.e. alternative statistical models,
such as the geometric mean) and probabilistic calibration routines
that might better address the uncertainty in water level observations
and computation of a representative “average” value while also
accounting for uncertainties associated with a relatively limited



Table 2
Summary of AHPS forecasting skill based on the percentage of average monthly water
levels observed from 1997 through 2010 within AHPS 3-month and 6-month forecast
90% prediction intervals, and corresponding median water level forecast bias.

Lake(s) Percentage (%) of observations
within forecast 90% prediction
interval

Bias in median water level
forecast(centimeters)

3-month
forecast

6-month
forecast

3-month
forecast

6-month
forecast

Superior 64 69 −0.4 0.9
Michigan–Huron 68 71 1.5 6.1
St.Clair 72 73 −5.5 −3.7
Erie 74 69 −5.5 −5.4
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sampling size, variability over different spatial and temporal scales
and errors (perhaps minor) in the individual water level measure-
ments themselves.

There are also, of course, sources of uncertainty arising from the
models and algorithms within AHPS that individually and collectively
(Fig. 1) represent the major components of the hydrologic cycle and
water level regulation plan-based interventions. While some of these
sources of uncertainty are acknowledged and described in previous
studies, we revisit them here to establish short term research priorities
and to more closely align efforts to reduce those uncertainties with
ongoing regional andnational researchpriorities, including theplanning,
design, and siting of climate and hydrometeorological data collection
infrastructure. For example, the currentAHPSmethodology for gathering
and compiling meteorological data, while robust and efficient, does not
fully utilize the full range of real-time data available from Environment
Canada (EC) or NOAA including, for example, the Meteorological
Assimilation Data Ingest System, orMADIS (Miller, 2009). Asmentioned
in the Introduction, the NWS CHPS system represents the type of
innovative and comprehensive tool which could potentially address this
need. Exploring how CHPS (and similar comprehensive modeling
frameworks) could be utilized to improve Great Lakes water level
forecasting (through, among other potential benefits, more efficient
acquisition of real-time data at higher spatial and temporal resolutions)
is an exciting and important area for future research.

Similarly, as with other process-based hydrological models in the
Great Lakes drainage basin, AHPS could potentially be improved
through a more explicit quantification of uncertainty in precipitation,
evaporation, and runoff estimates (Croley, 1989; Fortin et al., 2006;
St-Hilaire et al., 2003). At present, AHPS employs a Thiessen polygon-
based averaging scheme for translating daily rainfall observations at
individual gauging stations into subbasin averages (Croley and
Hartmann, 1985), a methodology which has been applied and
evaluated rather extensively in hydrological modeling (Tabios and
Salas, 1985; Teegavarapu and Chandramouli, 2005). As currently
encoded in AHPS, however, precipitation estimates do not account for
measurement uncertainty or within-subbasin variability. Precipita-
tion measurement uncertainty and spatial variability, regardless of
how it is ultimately quantified, would almost certainly lead to changes
in water level forecasts (and the expression of variability in those
forecasts), not only because precipitation measurements are believed
to be a significant source of uncertainty in AHPSmodel inputs, but also
because the use of modified precipitation estimates would require
recalibration of other components of AHPS as well, including the
rainfall–runoff model.

Indeed, the version of the rainfall–runoff model (the LBRM)
currently encoded in AHPS has not been calibrated recently, and a
more recent calibration should be incorporated in the near future to
reflect recent changes in land use patterns, climatology, and in the
relationship between subbasin attributes and hydrological response
(Wagener and Wheater, 2006). Recalibration of the LBRM, however,
should be conducted in light of availability of other rainfall–runoff
model alternatives and schemes for predicting runoff in subbasins
with limited or no flow observations (Kokkonen et al., 2003; Krueger
et al., 2010). Such model alternatives include (but are certainly not
limited to) the Distributed Large Basin Runoff Model (or DLBRM, as
described in Croley et al., 2005) and the general class of data-based
mechanistic models (Jakeman et al., 1990), including their imple-
mentation in readily-available GUI packages (see, for example Croke
et al., 2006). Some of these alternatives (particularly the DLBRM)
represent approaches that attempt to quantify model parameters at a
higher spatial resolution (i.e. over a finer spatial grid) than the current
AHPS algorithms. There is an ongoing debate, however, regarding the
relative benefits of lumped versus distributed modeling (see Beven,
2001, for further discussion), andwe view amore focused comparison
of these alternatives as an area for future research. We also
acknowledge that existing NOAA comprehensive hydrological model-
ing frameworks, including CHPS, are explicitly designed to facilitate
this type of comparison through integration of multiple model
algorithms, a feature which we believe has significant potential for
advancing the state-of-the-art of Great Lakes water level forecasting
research.

We also recognize that effectively propagating any NBS sequence into
water level forecasts depends on both the selected water level regulation
plan (and how it is encoded within the overall modeling framework) as
well as algorithms representing the formation, aggregation, and disag-
gregation of ice in Great Lakes interconnecting channels. To address this
need, the current regulation and routingmodel algorithm in AHPS should
continue to be updated and revised tomatch the current regulation plans
and state-of-the-art algorithms encoding those plans, and to include
information from the most recent flow–discharge relationship studies. In
addition, an ice module should be added along with a subsequent
assessment of potential improvements inwater level forecasting skill.We
suspect that an ice module, if implemented, might help AHPS better
explain some of the more extreme lake level phenomena resulting from
ice jams (for example) such as the one which occurred upstream of Lake
St. Clair in early 2010 (Fig. 2). For further discussion of regulation plans
within the context of propagating probabilistic forecasts into lake level
management decisions, see Lee et al., (1997).

Finally, this effort underscores the importance of storing historical
forecasts and the data from which they were derived to serve as a
basis for model performance and prioritizing future model improve-
ments. As methods for computing uncertainty change and data
becomesmore accurate, having access to awide range of forecasts will
serve to improve ourmodel's skill. Bymaintaining this archive of data,
we hope to increase the value of AHPS to the research and operation
groups in the Great Lakes community. Given that data storage is not
nearly the limitation it was when AHPS was assembled, this should be
relatively easy to overcome in the future.

Conclusions

The results of our study suggest that the current version of AHPS
captures the main temporal dynamics of Great Lake water levels both
3 and 6 months into the future, and the portion of water level
variability explained by AHPS is relatively consistent across both 3-
and 6-month forecasts. Multiple improvements, however, can be
made to the current version of AHPS; one of the most critical is
incorporation of residual error terms. Initially, an error term should be
applied directly to water level forecasts. Ideally, each model
component within AHPSwould include a residual error term designed
to account for model uncertainty and to propagate that uncertainty
into water level forecasts in a hierarchical framework (Gelman and
Hill, 2007; Gronewold and Borsuk, 2010), although observations for
supporting estimates of residual error may not be available for all
model components.

In addition, a series of alternative process models and model
calibration routines can be employed within the existing modular



583A.D. Gronewold et al. / Journal of Great Lakes Research 37 (2011) 577–583
framework of AHPS to explore potential improvements in water level
forecasting skill. Combining these efforts with the development of
similar comprehensive hydrological modeling frameworks (such as
NOAA's CHPS framework) could set a new standard for state-of-the-
art Great Lakes water level forecasting research.While the assessment
in this paper acknowledges the probabilistic nature of AHPS current
forecasting system, future assessments could employ more rigorous
skill assessments including the assessment of rank histograms
(Elmore, 2005) and an analysis of posterior predictive p-values
(Gronewold et al., 2009).

The analysis and results presented in this paper serve as a platform
for launching new research initiatives focused on improving AHPS
and, more generally, the forecasting of net basin supplies and water
levels within the Great Lakes. We hope these and future assessments
will help provide guidance for prudent investments in monitoring
infrastructure networks expected to reduce uncertainty and improve
model forecasting skill.
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